- Why aren’t there more quantum
algorithms ?
- Quantum Programming Languages

By : Amanda Cieslak and Ahmana Tarin

there are only a few problems

for which quantum computers
can offer exponential speed-up
over classical computers (Shor’
s, Grover’s)

Why a re n t th e re difficult to go about finding a
m O re q u a ntu m quantum algorithm compared to

classical algorithms because
a |g O I’Ith mS? quantum computers are very
* different than classical
computers, so the approach to
an algorithm is very different
too.

Unique Problems

® Researchers work and look for quantum algorithms that solve
problems that are not known to be solved classically in polynomial
time, which is difficult since to find such a problem we would assume
quantum computers can not solve NP-complete problems in faster
exponential time as opposed to classical computers. (Superpolynomial
speed-up cannot arise from problems that have polynomial-time classical
algorithms, like P AND NP).

® In order to achieve super-polynomial speed-up, we would need to find
a problem which is neither in P nor is NP-complete. Due to the success
of classical algorithms, there are few natural problems that fit these

requirements.

® most of the focus in classical computing has been on
classifying problems as polynomial time or as NP-hard,
which has left few well-studied problems outside that are
not known to be outside of these two classes.

® Also searching for super-polynomial speed-up is difficult,
and what might be a more useful approach is to try to find
faster quantum algorithms for problems already known to
be classically solvable in polynomial time. This provides
polynomial factor speed-ups, which can lead to finding
other new techniques for designing quantum algorithms.

Applying quantum physics

® computer scientists have less experience with quantum
mechanics in comparison to physicists. In order for a
quantum algorithm to provide speed-up over a classical
computation it must use interference, which is a concept
less known by computer scientists.

Quantum Programming Languages

® A programming language for quantum hardware to help us control the
quantum computing device and implement a quantum algorithm

® To provide tools for researchers to understand how quantum computation
works and how to reason formally about quantum algorithms

® Classical Programming : DATA + CONTROL = PROGRAMMING

® Quantum Programming: QUANTUM DATA + CONTROL = QUANTUM
PROGRAMMING

® This gives us the option to manipulate quantum data without having to have
the knowledge of the underlying operating system and quantum hardware

Architectures for Quantum Computing

1. Quantum Circuits:
a. Input Device - where we can feed in quantum data
b. Basic Gates - quantum circuits
c. Device to measure - result is a sequence of bits that can be
stored/manipulated later
2. Quantum Turing Machines:
a. A quantum analog of Turing Machines
b. Convenient for discussing quantum complexity, but not a design for a
programming language
3. Quantum Random Access Memory Model (QRAM):
a. A classical computer, playing the role of the master
b. A quantum computer device, that can be accessed by the master
computer on request

QRAM

Idea: A programmer writes classical code in a classical language, but when
they need the extra quantum power, they can add a few lines of quantum
assembler code.

No need to know how qubits are physically stored, initialized, manipulated, or
measured.

Quantum Hardware Interface, QHI, will translate assembler commands issued
by the master into explicit actions performed by the quantum device.

Quantum Processor

1. A set of quantum data storage registers

a. Quantum Register: An interface to an addressable sequence of qubits. Each g-register as a
unique identifier by which it is referred.

b. The first thing to do is ask the quantum device through the quantum hardware interface to
initialize a sequence of qubits

2. Utilities that apply operations on the storage

® After the quantum register has been initialized and manipulated, the
programmer can issue a command that will measure selected portions. This
will return a classical value to the main program.

Quantum Programming

INITIALIZE R 2

® allocated a 2 qubit register names R and initializes it to |00>
U TENSORH H

® creates a unitary matrix U of size 4 x 4

APPLY UR

® appliesUtoR

MEASURE R RES

® measures the g-register R and stores the result in the bit array RES

Languages

Imperative Programming: program that is mainly a sequence of commands with
flow control statements. C, Python, Java

Logical Programming: a program is a specification of properties and relations
in a fragment of first-order logic

Functional Programming: specifications of a function. The program will be
provided with an acceptable value for the function and it will compute the
return value. (QUANTUM DATA AND CLASSICAL CONTROL)

® Imperative Quantum Programming Languages:
o QCL (Quantum Computation Language): high level, architecture independent programming
language for quantum computers, with a syntax derived from classical procedural languages

like C or Pascal. This allows for the complete implementation and simulation of quantum
algorithms (including classical components) in one consistent formalism.
o Standard Library includes:
B controlled-not with many target qubits,
B Hadamard operation on many qubits,
B parse and controlled phase.

® Functional Quantum Programming Languages
o QFL and QPL: QFC and QPL are two closely related quantum programming lan
by Peter Selinger. They differ only in their syntax.

o These languages have classical control flow but can operate on quantum or classical data.

https://en.wikipedia.org/wiki/Hadamard_operation
https://en.wikipedia.org/wiki/Hadamard_operation

